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1. INTRODUCTION

Mathematical models of control systems are designed on the basis of known physical laws, as
well as measurable parameters of the plant. Technological tolerances and measurement errors in
the control system may lead to a mismatch between the mathematical model and the real plant.
In some cases, this mismatch is significant and may lead to loss of system performance, and to
the loss of stability of the closed-loop system. Thus, analysis and control problems subject to
inexact knowledge about the parameters of mathematical models, called robust analysis and control
problems, arise.

Depending on the initial assumptions regarding the type of uncertainties of the control system,
there are various approaches to the analysis of its robust properties. One of the popular means of
describing uncertainties in linear systems is polytopic uncertainty. This uncertainty is characterized
by the fact that the unknown parameters of the system lie on the given simplex. If a system with
polytopic uncertainty is lienar time invariant one, then in the literature it is called a polytopic
system. For discrete-time linear systems, there are many methods for checking robust stability [1–4].
Papers [1–3] are devoted to the study of the stability of systems with polytopic time-invariant and
time varying uncertainties using parametric Lyapunov functions. In [4] the results of robust analysis
of polytopic systems using of linear matrix inequalities are presented. The results are given in terms
of nonparametric matrix inequalities.

Along with the problems of studying robust stability of uncertain systems, one of the important
aspects analysis of control systems is the ability to suppress external disturbances. Thus, in the
literature it is known methods for analyzing the quality of suppression of external disturbances in
terms of H2- and H∞-norms [5]. Assuming that correlated random disturbances act at the input
of the system, an anisotropy-based approach can be used to analyze the quality of its suppression
by the system [6–8]. Feature of anisotropy-based approach is to study the quality of system perfor-
mance under impact of correlated stationary random disturbances with a known mean anisotropy
level. Methods of anisotropy-based analysis and control of polytopic systems were studied in [9–11].
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In [9] parametric version of the anisotropy-based bounded real lemma, one of the results of non-
parametric numerical analysis anisotropy-based performance analysis was obtained in [10], [11] is
devoted to solving problem of anisotropy-based state-feedback control design with closed-loop pole
placement.

This paper proposes numerical methods for solving the problem of anisotropy-based analysis for
polytopic systems using linear matrix inequalities. All these methods are derived from parametric
anisotropy-based bounded real lemma. The degree of conservatism of the obtained conditions is
analyzed, and also estimates of their computational complexity are given.

2. PROBLEM STATEMENT

Consider linear system with state space representation as

x(k + 1) = A(Θ)x(k) +Bw(Θ)w(k), (1)

y(k) = C(Θ)x(k) +Dw(Θ)w(k), (2)

where x(k) ∈ R
n is a state, w(k) ∈ R

m is external random disturbance with zero mean and bounded
mean anisotropy level A(W ) � a (a � 0), y(k) ∈ R

p is output.

Matrices A(Θ), Bw(Θ), C(Θ), Dw(Θ) are defined from the expressions

A(Θ) =
r∑

i=1

θiAi, Bw(Θ) =
r∑

i=1

θiBwi,

C(Θ) =
r∑

i=1

θiCi, Dw(Θ) =
r∑

i=1

θiDwi,

(3)

with known constant matrices Ai, Bwi, Ci, Dwi of appropriate dimensions and vector Θ of unknown
parameters which satisfies relations

r∑
i=1

θi = 1, θi � 0, θi ∈ R, ∀i = 1, r. (4)

Mean anisotropy characterizes a measure of difference between Gaussian random sequence and
white Gaussian noise with zero mean and identity covariance (we call it standard) in terms of
relative entropy and is calculated using the formula

A(W ) = − 1

4π

π∫
−π

ln det
mSw(ω)

1
2π

∫ π
−π TraceSw(λ)dλ

dω, (5)

where Sw(ω) is a spectral density of sequence W = {w(k)}k∈Z.
Thus, parameter a � 0 defines the set of all Gaussian signals whose measure of difference from

standard Gaussian noise defined by expression (5), does no exceed value of a. It should be noted
that mean anisotropy functional is nonnegative and goes to zero if W is standard Gaussian noise [8].

Denote the set of all parameters Θ, satisfying (3) and (4), by Q and consider the mapping
Y = FΘW , defined by expressions (1)–(2).

Definition 1. Anisotropic norm of polytopic system (1)–(4) is norm of operator FΘ, defined by
expression

|||FΘ|||a = sup
Θ∈Q

sup
W : A(W )�a

‖Y ‖P
‖W‖P , (6)
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where

‖W‖P =

√√√√ lim
N→∞

1

2N + 1

N∑
k=−N

E|w(k)|2

is power norm of signal W .

One of the most important features of anisotropic norm is that it lies between scaled H2-norm
and H∞-norm, i.e. [8]

‖FΘ‖22
m

� |||FΘ|||2a � ‖FΘ‖2∞.

It mean that by varying value of mean anisotropy a from 0 to ∞, one can reduce or expand the
set of random signals, selecting the most favorable bandwidth and stability margins of the system
in the range between H2- and H∞-norms.

In problem of robust anisotropy-based analysis of polytopic systems it’s necessary to obtain
conditions for checking robust stability and anisotropic norm bounds of open-loop system (1)–(2)
for known mean anisotropy level a � 0 and given scalar γ > 0. Thus, the problem is formulated as
follows.

Problem 1. For known mean anisotropy level a � 0 of random external disturbance w(k) and
given scalar γ > 0 the problem is to check:

1) if the system robustly stable;

2) if the condition holds

|||FΘ|||a < γ.

Known results which are necessary for the further exposition are listed below. Let us consider
the system with known parameters, for which all of the vectors and matrices dimensions coincide
with ones in system (1)–(2):

x(k + 1) = Ax(k) +Bww(k), (7)

y(k) = Cx(k) +Dww(k). (8)

Now provide formulation of anisotropy-based bounded real lemma in terms of LMI [13].

Lemma 1. System (7)–(8) is stable and its anisotropic norm for given mean anisotropy level of
external disturbance a � 0 is bounded by scalar γ > 0, if there exist such matrices X > 0, Y > 0,
Φ > 0, and scalar μ > γ2, for which the following relations hold true:

μ−
(
e−2a detΦ

)1/q
< γ2, (9)⎡⎢⎢⎣

Φ− μIm � �

Bw −Y �

Dw 0 −Ip

⎤⎥⎥⎦ < 0, (10)

⎡⎢⎢⎢⎢⎢⎣
−X � � �

0 −μIm � �

A Bw −Y �

C Dw 0 −Ip

⎤⎥⎥⎥⎥⎥⎦ < 0, (11)

XY = In. (12)
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3. PROBLEM SOLUTION

3.1. Parametric Anisotropy-Based Bounded Real Lemma

Let us formulate parametric conditions for anisotropy-based analysis of a polytopic system (1)–(2),
on the basis of which the main results of this paper will be obtained.

Theorem 1. System (1)–(2) is robustly stable and its anisotropic norm does not exceed given
scalar value γ > 0 for known mean anisotropy level a � 0 if there exist such matrices P (Θ) > 0,
Ψ(Θ) > 0, nonsingular matrices G1(Θ), G2(Θ) and scalar η > γ2, such that the following inequal-
ities hold true

η −
(
e−2a detΨ(Θ)

)1/m
< γ2, (13)

⎡⎢⎢⎢⎣
Ψ(Θ)− ηIm � �

G1(Θ)Bw(Θ) L1(Θ) �

Dw(Θ) 0 −Ip

⎤⎥⎥⎥⎦ < 0, (14)

⎡⎢⎢⎢⎢⎢⎢⎣
−P (Θ) � � �

0 −ηIm � �

G2(Θ)A(Θ) G2(Θ)Bw(Θ) L2(Θ) �

C(Θ) Dw(Θ) 0 −Ip

⎤⎥⎥⎥⎥⎥⎥⎦ < 0, (15)

where L1(Θ) = −G1(Θ)−GT
1 (Θ)+P (Θ) and L2(Θ) = −G2(Θ)−GT

2 (Θ)+P (Θ), for each Θ ∈ Q.

The proof of the theorem is listed in Appendix.

Conditions of Theorem 1 depend on parameters Θ explicitly. Existence of any parametric
matrices Ψ(Θ), P (Θ), G1(Θ), and G2(Θ), which satisfy all the conditions of the Theorem 1, would
allow to check robust stability of the system and establish the fact that its anisotropic norm is
bounded by γ for known mean anisotropy level a � 0 of input disturbance W . There is currently no
formal method for determining the exact type matrices P (Θ) as a function of the parameter vector
Θ. In scientific literature such function P (Θ) is called parametric Lyapunov matrix [1, 2, 4]. Similar
statement holds for the rest parametric matrices. Unfortunately, such parametric dependence may
substantially complicate analysis of initial plant. It is possible to reduce numerical complexity of the
algorithm by introducing supplementary restrictions, for example, by using different approximations
of matrices Ψ(Θ), P (Θ), G1(Θ) and G2(Θ). On the one hand, this approach allows to get rid of
explicit appearance of parameter vector Θ, on the other hand, it bring some conservatism. Below
we present several methods of nonparametric anisotropy-based analysis of the polytopic system
(1)–(2) depending on various approximations.

3.2. Nonparametric Variations of Anisotropy-Based
Bounded Real Lemma

Let Ψ(Θ) = Ψ, G1(Θ) = G1, G2(Θ) = G2, P (Θ) = P. Then parameters θi can be factorized in
expressions (14)–(15). The following result is obtained directly.

Theorem 2. System (1)–(2) is robustly stable and its anisotropic norm does not exceed given
scalar value γ > 0 for known mean anisotropy level a � 0 if there exist such matrices P > 0, Ψ > 0,
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nonsingular matrices G1, G2, and scalar η > γ2, for which the following inequalities hold true:

η −
(
e−2a detΨ

)1/m
< γ2, (16)⎡⎢⎢⎣

Ψ− ηIm � �

G1Bwi L1 �

Dwi 0 −Ip

⎤⎥⎥⎦ < 0, (17)

⎡⎢⎢⎢⎢⎢⎣
−P � � �

0 −ηIm � �

G2Ai G2Bwi L2 �

Ci Dwi 0 −Ip

⎤⎥⎥⎥⎥⎥⎦ < 0, (18)

where L1 = −G1 −GT
1 + P, L2 = −G2 −GT

2 + P and i = 1, r.

The proof is trivial and is not given in the paper. Theorem 2 represents the simplest and most
conservative solution to the Problem 1.

Now we will use linear approximation for parametric Lyapunov matrix and some auxiliary
variables.

Theorem 3. System (1)–(2) is robustly stable and its anisotropic norm does not exceed given
scalar value γ > 0 for known mean anisotropy level a � 0 and all possible uncertainties which sat-
isfy (3)–(4), if there exist matrices Pi > 0, Ψ > 0, nonsingular matrices G1i, G2i, and scalar value
η > γ2, for which the following inequalities hold true:

η −
(
e−2a detΨ

)1/m
< γ2, (19)⎡⎢⎣ Ψ− ηIm � �

G1iBwi −G1i −GT
1i + Pi �

Dwi 0 −Ip

⎤⎥⎦ < 0, (20)

⎡⎢⎢⎢⎣
−Pi � � �

0 −ηIm � �

G2iAi G2iBwi −G2i −GT
2i + Pi �

Ci Dwi 0 −Ip

⎤⎥⎥⎥⎦ < 0, (21)

⎡⎢⎣ Ψ− ηIm � �

G1iBwj −G1i −GT
1i + Pi �

Dwj 0 −Ip

⎤⎥⎦+

⎡⎢⎣ Ψ− ηIm � �

G1jBwi −G1j −GT
1j + Pj �

Dwi 0 −Ip

⎤⎥⎦ < 0, (22)

⎡⎢⎢⎢⎣
−Pi � � �

0 −ηIm � �

G2iAj G2iBwj −G2i −GT
2i + Pi �

Cj Dwj 0 −Ip

⎤⎥⎥⎥⎦+

⎡⎢⎢⎢⎣
−Pj � � �

0 −ηIm � �

G2jAi G2jBwi −G2j −GT
2j + Pj �

Ci Dwi 0 −Ip

⎤⎥⎥⎥⎦ < 0, (23)

where i, j = 1, r, i < j.

The proof of the theorem is listed in Appendix.

Conditions derived in Theorem 3 do not depend on the parameter vector Θ and allow us to
estimate anisotropic norm of the polytopic system by checking fulfilment of 2r + r(r − 1) + 1 in-
equalities. The number of inequalities as well as decision variables can be reduced by increasing the
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Table 1. Estimation of numerical complexity of analysis methods

Method Number of inequalities Number of decision variables Number of unknown parameters

Theorem 2 2r + 2 6 1 +
m2 +m

2
+

5n2 + n

2

Theorem 3 2r + r(r − 1) + 2 2 + 3r 1 +
m2 +m

2
+ r

5n2 + n

2

Theorem 4 2r +
r(r − 1)

2
+ 2 2 + 2r 1 +

m2 +m

2
+ r

3n2 + n

2

conservatism of the estimation, taking into account the fact that Φ(Θ) = P−1(Θ). Let us formulate
a theorem.

Theorem 4. System (1)–(2) is robustly stable and its anisotropic norm is strictly less than scalar
γ > 0 for known mean anisotropy level a � 0 and all possible inequalities, satisfying (3)–(4), if
there exist such matrices Φi > 0, Ψ > 0, nonsingular matrices Gi, and scalar η > γ2, for which the
following inequalities hold true:

η −
(
e−2a detΨ

)1/m
< γ2, (24)⎡⎢⎣ Ψ− ηIm � �

Bwi −Φi �

Dwi 0 −Ip

⎤⎥⎦ < 0, (25)

⎡⎢⎢⎢⎣
−Gi −GT

i +Φi � � �

0 −ηIm � �

AiGi Bwi −Φi �

CiGi Dwi 0 −Ip

⎤⎥⎥⎥⎦ < 0, (26)

⎡⎢⎢⎢⎣
−Gi −GT

i +Φi � � �

0 −ηIm � �

AjGi Bwj −Φi �

CjGi Dwj 0 −Ip

⎤⎥⎥⎥⎦+

⎡⎢⎢⎢⎣
−Gj −GT

j +Φj � � �

0 −ηIm � �

AiGj Bwi −Φj �

CiGj Dwi 0 −Ip

⎤⎥⎥⎥⎦ < 0, (27)

where i, j = 1, r, i < j.

The proof of the theorem is listed in Appendix.

Conditions derived in Theorem 4 allow to estimate anisotropic norm of polytopic system by
checking of fulfilment of 2r + r(r−1)

2 + 2 inequalities. Data on the computational complexity of
using each of the theorems formulated above are given in Table 1.

To estimate the anisotropic norm of the system (1)–(2) one can solve the problem of minimizing
the variable γ on the set of convex constraints specified by the theorems derived above.

Unfortunately, analytical methods do not allow to evaluate the degree of conservatism of con-
ditions obtained in Theorems 3 and 4. The degree of conservatism of the conditions can only be
assessed for specific examples using numerical tools. These tools can be developed based on the
Theorem 1. Consider the grid method analysis of polytopic systems based on Theorem 1. The
algorithm can be presented as follows.

Algorythm 1 (grid method)

Step 1. Set mean anisotropy level a � 0 and step of grid h. Define set Ω, lying inside unit cube
of dimensions R

r−1 and consisting of mesh points. Fix parameter Θ, by setting first (r − 1)

AUTOMATION AND REMOTE CONTROL Vol. 84 No. 10 2023
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components coordinates of a point from the set Ω, the last component is calculated by formula

θr = 1−
r−1∑
i=1

θi = 1.

Step 2. Set k = 1.
Step 3. While k � N, choose element from the set Ωk, fix system matrices Ak =

∑r
i=1 θiAi, Bk =∑r

i=1 θiBwi, Ck =
∑r

i=1 θiCzi, Dk =
∑r

i=1 θiDzwi.
Step 4. For fixed values Ak, Bk, Ck, Dk solve optimization problem:

γ2k = min γ2

on the set of variables {η, γ2, P, Ψ, G1, G2}, satisfying (9)–(11).
Step 5. If system of matrix inequalities is not feasible at the Step 4, then initial plant is not

stable for given parameter values, algorithm stops. If the solution is found, then value
γ∗ = max{γk, γk−1} is calculated. If k < N , then k = k + 1, and go to Step 4. If k = N ,
then go to Step 6.

Step 6. Upper bound of anisotropic norm is defined as γ∗.
One of the disadvantages of this method is that a sufficiently large grid step will not allow one

to estimate the anisotropic norm with satisfactory accuracy and give an answer about the stability
of the system. Therefore, it is recommended to first check the system for robust stability using one
of the existing methods.

4. NUMERICAL EXAMPLE

In the following example, we will investigate the degree of conservatism of the methods for
estimating the anisotropic norm of a polytopic system, formulated in the Theorems 2–4.

Example 1. Let the system be given by the following matrices:

A1 =

[
0.9 −0.7
0.5 −0.3

]
, A2 =

[
1 1

−0.5 −0.7

]
, A3 =

[
0.7 0.4
−0.5 −0.5

]
,

Bw1 =

[
0.5
−0.5

]
, Bw2 =

[
−0.5
2

]
, Bw3 =

[
0
−2

]
,

C1 = C2 =
[
1 0

]
, C3 =

[
1 0.3

]
, Dw1 = 0, Dw2 = 0.1, Dw3 = −0.1.

Note that this system is stable for all possible values of the parameters Θ. To assess the degree
of conservatism of methods, proposed in Theorems 2–4, we will use the grid method for analyzing
the system with grid step h = 0.01. Figures 1–3 illustrate the results of minimizing the value of γ
at various grid nodes. When calculating the norm, Theorem 1 was used for selected numerical
values of the parameter vector Θ at various grid nodes.

As can be seen in figures, the double supremum (6) for different values of mean anisotropy a
is reached at points Θ which do not coincide with each other. The variation of the norm oc-
curs smoothly and without jumps. Checking stability conditions and an attempt to estimate the
anisotropic norm using the Theorem 2 leads to an infeasible problem, therefore, numerical results
are given only for Theorems 3 and 4. Results of numerical experiments for calculating anisotropic
norm of the system are given in Table. 2.

The conditions of the Theorem 2 are the most conservative, which led to an infeasible problem.
Theorems 3 and 4 allow us to numerically estimate the anisotropic norm of a given system using
linear matrix inequalities. It can be seen from Table 2, the conditions of the Theorem 4 provide
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Fig. 1. Dependence of the minimum value γ on the parameters Θ at a = 0.
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Fig. 2. Dependence of the minimum value γ on the parameters Θ at a = 0.5.
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Fig. 3. Dependence of the minimum value γ on the parameters Θ at a = 1.5.
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Table 2. Results of calculating the anisotropic norm in Example 1

Mean anisotropy a 0 0.1 0.5 1 1.5 100

|||FΘ|||a based on Theorem 1 1.6921 1.9258 2.3825 2.6616 2.7564 2.8100

|||FΘ|||a based on Theorem 3 4.6495 6.2913 7.9585 8.6163 8.8423 8.9707

|||FΘ|||a based on Theorem 4 6.7304 8.1552 9.0582 9.3701 9.4742 9.5327

Table 3. Results of calculating the anisotropic norm in Example 2

Mean anisotropy a 0 0.1 0.3 0.7 1.5 10

|||FΘ|||a based on Theorem 2 0.0771 1.1699 1.9277 2.6854 3.3354 3.7838

|||FΘ|||a based on Theorem 3 0.0728 0.3581 0.5827 0.8088 1.0032 1.1375

|||FΘ|||a based on Theorem 4 0.0727 0.3579 0.5820 0.8083 1.0028 1.1366

more conservative results. Despite this, the asymptotic behavior of the anisotropic norm for the
given numerically implementable methods is preserved with a significantly lower computational
complexity. Thus, these methods can be used to estimate the anisotropy-based performance of
polytopic systems.

Example 2. Consider now mathematical model of damped oscillations of a spring pendulum:

ẋ(t) = Ax(t) +Bww(t),

y(t) = x1(t) +Dww(t).

Here

A =

[
0 1

−ω2 −2ξω

]
,

where ω is natural frequency of the system, ξ is attenuation coefficient, x1(t) is pendulum’s center
of mass position, and x2(t) is pendulum’s center of mass speed.

Disturbance w(t) ∈ R
2 consists of external disturbance, acting on position x1(t), and measure-

ment noise. Then

Bw =

[
1 0
0 0

]
, Dw =

[
0 0, 1

]
.

Let the system parameters are ξ = 0.1, ω ∈ [4.5; 5.2].

Initial plant given continuous time is discretized using zero order hold as

Ad = eA
fh, Bd

w =

h∫
0

eA
f (h−τ)Bwdτ, (28)

where h is discretization step.

Initial continuous plant was discretized with discretization step h = 10−3 sec. The following
parameters were obtained:

Ad
1 =

[
1 0.0010

−0.0202 0.9991

]
, Ad

2 =

[
1 0.0010

−0.0270 0.9989

]
,

Bd
w1 = 10−3 ×

[
1 0

−0.0101 0

]
, Bd

w2 = 10−3 ×
[

1 0
−0.0135 0

]
,

C1 = C2 =
[
1 0

]
, Dw1 = Dw2 =

[
0 0.1

]
.

Note that initial system is stable. The results of calculating of the anisotropic norm for a spring
pendulum are summarized in Table 3.
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5. CONCLUSIONS

In this paper, conditions for the boundedness of the anisotropic norm of a linear polytopic system
are obtained in terms of linear matrix inequalities. Various options for nonparametric estimation
were considered anisotropic norm, and also analyzed the estimation accuracy and computational
complexity of these methods. The conditions are convex and formulated in terms of matrix in-
equalities, the number of which depends on the number of vertices of the polytope.
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APPENDIX

Proof of Theorem 1. The proof of the theorem consists of two parts. In the first one we will
obtain conditions under which the polytopic the system (1)–(2) is robustly stable, and its H∞-
norm is bounded some number

√
η, i.e. FΘ ∈ H∞p×m. In the second part of the proof we obtain

conditions for the boundedness of the anisotropic norm for the robustly stable system FΘ ∈ H∞p×m.

Consider the following parametric function as Lyapunov function candidate

V (k) = xT(k)P (Θ)x(k), P (Θ) > 0. (A.1)

Since we first require to prove the stability of the system and the boundedness of its H∞-norm,
then, to simplify calculations and without loss of generality, we assume that W = {w(k)}k ∈ Z ∈ L2.
The difference between V (k + 1) and V (k) is determined by the formula

V (k + 1)− V (k) = xT(k + 1)P (Θ)x(k + 1)− xT(k)P (Θ)x(k). (A.2)

Now we consider the expression:

V (k + 1)− V (k) + zT(k)z(k) − ηwT(k)w(k)

= {substitute x(k + 1) = A(Θ)x(k) +Bw(Θ)w(k) and z(k) = C(Θ)x(k) +Dw(Θ)w(k)}

=
[
xT(k) wT(k)

] ([
A(Θ) Bw(Θ)

]T
P (Θ)

[
A(Θ) Bw(Θ)

]
+

[
C(Θ) Dw(Θ)

]T [
C(Θ) Dw(Θ)

]
−

[
P (Θ) 0
0 ηIm

])[
x(k)
w(k)

]
. (A.3)

Thus, inequality

V (k + 1)− V (k) + zT(k)z(k) − ηwT(k)w(k) < 0 (A.4)

holds for all x(k) and w(k) if[
A(Θ) Bw(Θ)

]T
P (Θ)

[
A(Θ) Bw(Θ)

]
(A.5)

+
[
C(Θ) Dw(Θ)

]T [
C(Θ) Dw(Θ)

]
−

[
P (Θ) 0
0 ηIm

]
< 0.

Let us transform the inequality (A.5) to the form[ −P (Θ) 0

0 −ηIm

]
−

[
A(Θ) Bw(Θ)

C(Θ) Dw(Θ)

]T [ −P (Θ) 0

0 −Ip

] [
A(Θ) Bw(Θ)

C(Θ) Dw(Θ)

]
< 0, (A.6)
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where matrix

[
−P−1(Θ) 0

0 −Ip

]
is negative definite. Applying to the inequality (A.6) Schur

complement, we have ⎡⎢⎢⎢⎢⎣
−P (Θ) � � �

0 −ηIm � �

A(Θ) Bw(Θ) −P−1(Θ) �

C(Θ) Dw(Θ) 0 −Ip

⎤⎥⎥⎥⎥⎦ < 0. (A.7)

Fulfilling of the inequality (A.6) for zero input makes true inequalities of the form (A.4) for any
k ∈ Z+

⋃{0} and allows to sum up them from k = 0 to k = ∞. This implies the inequality

V (∞)− V (0) +
∞∑
k=0

zT(k)z(k) − η
∞∑
k=0

wT(k)w(k) < 0. (A.8)

For zero initial condition (x(0) = 0) V (0) = 0, assuming that V (∞) = 0, inequality (A.8) transforms
to the form ∞∑

k=0

zT(k)z(k) < η
∞∑
k=0

wT(k)w(k).

Therefore,

sup
Θ∈Q

sup
W∈L2

∑∞
k=0 z

T(k)z(k)∑∞
k=0w

T(k)w(k)
< η. (A.9)

Fulfilment of inequality (A.7) guarantees stability of the open loop system (1)–(2) and bound-
edness its H∞-norm by scalar

√
η.

At the second step, it is necessary to find out conditions that guarantee the boundedness of the
anisotropic norm for the mean anisotropy level A(W ) � a of input disturbances. Then conditions
of anisotropic norm boundedness can be defined by anisotropy-based bounded real lemma [12] as
follows:

−(det(Σ(Θ)))1/m < −(1− qγ2)e2a/m, (A.10)[
A(Θ)R(Θ)A(Θ) −R(Θ) AT(Θ)R(Θ)Bw(Θ)

BT
w(Θ)R(Θ)A(Θ) BT

w(Θ)R(Θ)Bw(Θ)− Im

]

+ q

[
CT(Θ)

DT
w(Θ)

] [
C(Θ) Dw(Θ)

]
< 0,

(A.11)

where q ∈ (0,min(γ−2, ‖FΘ‖−2∞ )), and Σ(Θ) defined by

Σ(Θ) = (Im −BT
w(Θ)R(Θ)Bw(Θ)− qDT

w(Θ)Dw(Θ)). (A.12)

Inequality (A.11) coincides with inequality (A.5) taking into account the change of variables
P (Θ) = ηR(Θ) and η = q−1. Thus, anisotropic norm of the system is bounded if inequalities (A.7)
and (A.11) hold true.

Consider inequality (A.10) in detail. Taking into account introduced notations, it can be rewrit-
ten as

η − (e−2a det(ηIm −BT
w(Θ)P (Θ)Bw(Θ)−DT

w(Θ)Dw(Θ)))1/m < γ2. (A.13)
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Introducing new variable

Ψ(Θ) < ηIm −BT
w(Θ)P (Θ)Bw(Θ)−DT

w(Θ)Dw(Θ),

where Ψ(Θ) = Ψ(Θ)T > 0 [13], we ascertain inequality (A.13) fulfilled, if two following inequalities
hold:

η − (e−2a det(Ψ(Θ)))1/m < γ2, (A.14)

Ψ(Θ) < ηIm −BT
w(Θ)P (Θ)Bw(Θ)−DT

w(Θ)Dw(Θ). (A.15)

Rewrite (A.15) as

Ψ(Θ)− ηIm −
[
BT

w(Θ) DT
w(Θ)

] [ −P (Θ) 0

0 −Ip

] [
Bw(Θ)

Dw(Θ)

]
< 0. (A.16)

Applying Schur complement to the expression (A.16), we obtain⎡⎢⎣ Ψ(Θ)− ηIm BT
w(Θ) DT

w(Θ)

Bw(Θ) −P−1(Θ) 0

Dw(Θ) 0 −Ip

⎤⎥⎦ < 0. (A.17)

By right and left multiplying inequality (A.17) by matrix

⎡⎢⎣ I 0 0

0 G1(Θ) 0

0 0 I

⎤⎥⎦ and its transposed, we

get ⎡⎢⎣ Ψ(Θ)− ηIm � �

G1(Θ)Bw(Θ) Λ1(Θ) �

Dw(Θ) 0 −Ip

⎤⎥⎦ < 0, (A.18)

where Λ1(Θ) = −G1(Θ)P−1(Θ)GT
1 (Θ).

Note that for P (Θ) > 0 it follows from inequality

−(G1(Θ)− P (Θ))TP−1(Θ)(G1(Θ)− P (Θ)) � 0

that

−G1(Θ)P−1(Θ)GT
1 (Θ) � −G1(Θ)−GT

1 (Θ) + P (Θ).

Introducing notation L1(Θ) = −G1(Θ)−GT
1 (Θ) + P (Θ) and replacing Λ1(Θ) by L1(Θ) at the in-

equality (A.18), we get inequality (14).

Let’s get rid of the inversion of the matrix P (Θ) in the inequality (A.7).To do this, we introduce
a new nonsingular matrix G2(Θ). By right and left multiplying inequality (A.7) by nonsingular
matrix ⎡⎢⎢⎢⎢⎣

I 0 0 0

0 I 0 0

0 0 G2(Θ) 0

0 0 0 I

⎤⎥⎥⎥⎥⎦ (A.19)
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and its transposed respectively, we get:⎡⎢⎢⎢⎢⎣
−P (Θ) � � �

0 −ηIm � �

G2(Θ)A(Θ) G2(Θ)Bw(Θ) Λ2(Θ) �

C(Θ) Dw(Θ) 0 −Ip

⎤⎥⎥⎥⎥⎦ < 0, (A.20)

where

Λ2(Θ) = −G2(Θ)P−1(Θ)GT
2 (Θ). (A.21)

Similar to previous case, we replace Λ2(Θ) by expression L2(Θ) = −G2(Θ) − GT
2 (Θ) + P (Θ).

As a result, we have expression (15).

Theorem 1 is proved.

Proof of Theorem 3. Define matrices Ψ(Θ), G1(Θ), G2(Θ), and P (Θ) in the form Ψ(Θ) = Ψ,
G1(Θ) =

∑r
i=1 θiG1i, G2(Θ) =

∑r
i=1 θiG2i, P (Θ) =

∑r
i=1 θiPi. Rewrite inequalities (14) and (15)

taking into account introduced assumptions.

It should be noted that the inequalities (14) and (15) contain blocks of constant matrices,
parametric matrices and products of two parametric matrices. Taking into account the introduced
appearance of parametric variables, and also taking into account the fact that (

∑s
i=1 θi)

2 = 1,
constant matrices can be written in the form

Ip =

(
s∑

i=1

θi

)2

Ip.

Because of identity
∑r

j=1 θj = 1, parametric matrices can be rewritten as

r∑
i=1

θiAi =
r∑

i=1

θi

⎛⎝ r∑
j=1

θj

⎞⎠Ai.

Expressions of the form G1(Θ)Bw(Θ) are written as follows:

G1(Θ)Bw(Θ) =
r∑

i=1

θ2i (G1iBi) +
r∑

i=1

r∑
i<j

θiθj(G1iBwj +G1jBwi).

Applying all above mentioned transformation to each element of inequalities (14) and (15), we
get:

r∑
i=1

θ2i

⎡⎢⎣ Ψ− ηIm � �

Bwi −G1i −GT
1i + Pi �

Dwi 0 −Ip

⎤⎥⎦

+
r∑

i=1

r∑
i<j

θiθj

⎛⎜⎝
⎡⎢⎣ Ψ− ηIm � �

G1iBwj −G1i −GT
1i + Pi �

Dwj 0 −Ip

⎤⎥⎦

+

⎡⎢⎣ Ψ− ηIm � �

G1jBwi −G1j −GT
1j + Pj �

Dwi 0 −Ip

⎤⎥⎦
⎞⎟⎠ < 0,
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r∑
i=1

θ2i

⎡⎢⎢⎢⎢⎣
−Pi � � �

0 −ηIm � �

G2iAi G2iBwi −G2i −GT
2i + Pi �

Ci Dwi 0 −Ip

⎤⎥⎥⎥⎥⎦

+
r∑

i=1

r∑
i<j

θiθj

⎛⎜⎜⎜⎜⎝
⎡⎢⎢⎢⎢⎣

−Pi � � �

0 −ηIm � �

G2iAj G2iBwj −G2i −GT
2i + Pi �

Cj Dwj 0 −Ip

⎤⎥⎥⎥⎥⎦

+

⎡⎢⎢⎢⎢⎣
−Pj � � �

0 −ηIm � �

G2jAi G2jBwi −G2j −GT
2j + Pj �

Ci Dwi 0 −Ip

⎤⎥⎥⎥⎥⎦
⎞⎟⎟⎟⎟⎠ < 0.

Since θi � 0, i = 1, r, it obvious that inequalities (13)–(15) hold, when inequalities (19)–(23)
hold.

Proof of Theorem 4. Let us consider inequalities (A.7) and (A.17), obtained in the proof of
Theorem 1. Introduce new variable Φ(Θ) = P−1(Θ), and fix parameter η and matrix Ψ. Then
inequalities (A.7) and (A.17) will be rewritten as follows:

⎡⎢⎣ Ψ− ηIm BT
w(Θ) DT

w(Θ)

Bw(Θ) −Φ(Θ) 0

Dw(Θ) 0 −Ip

⎤⎥⎦ < 0 (A.22)

and ⎡⎢⎢⎢⎢⎣
−Φ−1(Θ) � � �

0 −γ2Im � �

A(Θ) Bw(Θ) −Φ(Θ) �

C(Θ) Dw(Θ) 0 −Ip

⎤⎥⎥⎥⎥⎦ < 0. (A.23)

The latest inequality contains matrix Φ−1(Θ). To get rid of it, we will left and right multiply
inequality (A.23) by matrix ⎡⎢⎢⎢⎢⎣

GT(Θ) 0 0 0

0 Im 0 0

0 0 In 0

0 0 0 Ip

⎤⎥⎥⎥⎥⎦
and its transposed respectively. It results to:⎡⎢⎢⎢⎢⎣

Λ(Θ) � � �

0 −ηIm � �

A(Θ)G(Θ) Bw(Θ) −Φ(Θ) �

C(Θ)G(Θ) Dw(Θ) 0 −Ip

⎤⎥⎥⎥⎥⎦ < 0, (A.24)

where Λ(Θ) = −GT(Θ)Φ−1(Θ)G(Θ).
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Note that Φ(Θ) > 0, therefore fulfilment of inequality

−(G(Θ)− Φ(Θ))TΦ−1(Θ)(G(Θ) − Φ(Θ)) � 0

results to −GT(Θ)Φ−1(Θ)G(Θ) � −G(Θ)−GT(Θ) + Φ(Θ). From the latter it follows that inequal-
ity (A.24) holds, if inequality (A.23) holds.

Consider matrix Φ(Θ) be appeared in the form Φ(Θ) =
∑r

i=1 θiΦi taking into account expressions
for parametric uncertainties (3)–(4). Then inequalities (A.22) and (A.24) take form:

r∑
i=1

θi

⎡⎢⎣ Ψ− ηIm � �

Bwi −Φi �

Dwi 0 −Ip

⎤⎥⎦ < 0, (A.25)

r∑
i=1

θ2i

⎡⎢⎢⎢⎢⎣
−Gi −GT

i +Φi � � �

0 −ηIm � �

AiGi Bwi −Φi �

CiGi Dwi 0 −Ip

⎤⎥⎥⎥⎥⎦

+
r∑

i=1

r∑
i<j

θiθj

⎛⎜⎜⎜⎜⎝
⎡⎢⎢⎢⎢⎣
−Gi −GT

i +Φi � � �

0 −ηIm � �

AjGi Bwj −Φi �

CjGi Dwj 0 −Ip

⎤⎥⎥⎥⎥⎦

+

⎡⎢⎢⎢⎢⎣
−Gj −GT

j +Φj � � �

0 −ηIm � �

AiGj Bwi −Φj �

CiGj Dwi 0 −Ip

⎤⎥⎥⎥⎥⎦
⎞⎟⎟⎟⎟⎠ < 0.

(A.26)

Note that inequality (A.26) can be obtained using property (4) and considering that
(
∑r

i=1 θi)
2 = 1. Obviously, fulfilment inequalities (25)–(27) automatically leads to fulfilment in-

equalities (A.25) and (A.26), that completes the proof.
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